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Low -Frequency Scattering of
Dielectric Cylinders “

WEI-GAN LIN

Absrmct-A prevfowdy developed method of taking the geometrie
meanofthe upper andthe lower bounds asthefinsl answer isapplkdto
the problem of Iow-frequeney scattering of dielectric eyfinders. Some of
theresdts obtained agree welfwiththoseof Meiand Van BladelandaU

results are eheeked numericafty to be reasonable for praetieal appfieations.
~ dipok he Of ffIKW DIODKXIt~ and p’ for the tWOf10fSlhltiOIL9 Of the

applied field on the reetq@r conducting eylfmfer is believed to be exa@

soarethose fortheequflaterat eonduetfng triangular eyfinderand fortbe

eonduedng regufar pentagonal eylfnder.

I. INTRODUCTION

I N THIS PAPER we take up the problem of the low-

frequency or Rayleigh region scattering of the rectangu-

lar cylinder when the wavelength is much greater than the

maximum transverse dimensions of the cylinder. Much

work has been done on this subject [1]. The results already

published do not agree satisfactorily as they should among

one another.

In a previous work [2] we have calculated the character-

istic impedance of a coaxial line of rectangular outer

conductor and circular inner conductor, by finding upper

and lower bounds on the characteristic impedance and by

taking the mean value of these bounds as the final answer.

They are closed form expressions and they are exact. It

was discovered empirically that if the geometrical mean is

used instead of the arithmetic mean, better results can be

obtained. In fact, for the square slab line, the results thus

obtained are believed to be the most accurate results yet

available [3]. On applying this same method to the low-

frequency scattering problem of a rectangular dielectric

cylinder, we can take the normalized dipole moment of

the inscribed dielectric elliptical cylinder as the low bound

to that of the rectangular dielectric cylinder, and take the

normalized dipole moment of the circumscribed dielectric

cylinder of minimum cross-sectional area as the upper

bound to that of the rectangular dielectric cylinder. To

check the validity of this method we use the results of

another work [4], giving the scattering effect of metallic

right polygonal cylinders which are closed form and exact

in a quasi-static sense.

II. PREvIOUS WORKS

Our previous work [4] might not have been noticed, so

we outline its main points briefly.
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Fig, 1. Transformed circular cylinder and originaf polygonaf cylinder.

A. Scattering hy Conducting Rectangular Cylinders

By conformal transformation, we transform the exterior

of a polygonal cylinder into the exterior of a unit circular

cylinder. In so doing, an incoming uniform field is trans-

formed into a nonuniform field, of which the unit circular

cylinder forms a boundary. This uniform field is the first

approximation to the incoming plane wave. The potential

problem of a circular cylinder in a given external field is

then solved.

Let the exterior of a polygon in the u-o plane, as shown

in Fig. 1, be transformed into that of a unit circular

cylinder, then [3]

(11)

where

In this figure, we consider two kinds of polarization: the

wave with vector E parallel to the cylinder axis is called

“E-wave,” while that with vector H parallel to axis is

called “H-wave.”

Equation (1) transforms the uniform field in the w-plane,

– Eou or – EOO, into nonuniform fields, – Eou(r, 0), and

– Eov(r, 0), respectively, in the z-plane. In the z-plane the

boundary condition at Iz I = 1, i.e.,

91.=1=0> H-wave

or
aq

% ‘0’
E-wave

z-l

is then made use of to give the required solution.
For a right rectangular cylinder, we have

z (,Z-~i’l)(z-e-”,
‘= q-,o,- )(z-ei(~-e,)(z-ei(n+el) )1/:

z’

.dz+d9-”. @
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Fig. 2. Transformed circular cylinder and original rectangular cylin-

der.

Then, from (l), we transform the exterior of the unit circle

into that of the rectangular. Here the vertices xl, B, C, and

D are related in two figures as shown in Fig. 2. The ratio

of the long side to the short side being tan 00, we have

b E(sin01)–K(sinOl)cos281
~=tan OO= (3)

E(cos 8, ) – K(cos 01)sin2 @l

and

c=
a

(4)
2( E(cos Y31) – K(cos 81)sin2 61 “

Now, a uniform field – EOU along the u-axis in the

w-plane will be transformed into a nonuniform field

– u(r, 0 ) in the z-plane; so in the presence of the conduct-

ing cylinder, as the total field we may take ( EO= 1)

90= –d~je)+ ; :Cosno.

At r= 1, the boundary condition gives

–u(l,0)+~B~cosn8=0

and B. is seen to be the cosine Fourier coefficients of

U(l, e)

~l=;J:-”’2c(cos’~1 -cos2e)’’2sine~e= 2ccos2@l

–2 w–b’,

B2=—
J

–2c(cos201 –COS20)1’2sin2(3d9=0
IT2 Q,

and so on. In the x–y-plane, the first-order perturbing

term is

B, COS(? 2CCOS2 $, COS8
=

r r

but from (l), it is seen that as z~co, WSCZ, so

BICOSO CB1 COS$

‘“ Iwlr

where # is the argument angle in the w-plane. Coming

back to the w-plane, we can write the first-order perturb-

ing term as

2CZCOS’ el

w
Cos *

which is equivalent to the effect of a dipole of moment

2mo(2C2COS201 ) the direction of the dipole being along

the negative u-axis. Here co is the dielectric constant of the

medium surrounding the rectangular cylinder.

Putting the value of C from (4) and taking the moment

of the dipole term of the perturbing field by the rectangu-

lar cylinder to be p, we have finally

7TCOS20,
—_‘2- [E(coso,)-K(cos e,)sin%,]2

.%. (5)

If the external electric field is parallel to the u-axis of

Fig. 2, we take

Vo= –~(r,~)+ xB~/r”sinnO
n

and by the boundary condition q 1,=1= O, B; is seen to be

the coefficients of the expansion of the sine Fourier series

of O(1,0 ). We find among the others

=: Je’cos@(cos2e-cos2 e1)’’2d@=2csin2el.

Again, we take the moment of the dipole term of the

perturbing field by the cylinder to be p’, thenp’ = 27TeoCB~

=27rCoC(2C sin2 (?I). Putting in (4), we again have

vsin291 p’ b2—_ .— .

‘~;2 - [ E(cos/31)-K(cos 0,)sin201]2 eob2 a2

(6a)

or

7rsin2 191
—_

‘~i2 - [E(sinOl)-K(sin81 )cos201]2 “
(6b)

In regard to the problem of incoming E-wave, the

problem to be solved is one of a static magnetic field. Let

the external magnetic field be along the u-axis; then the

resultant magnetic potential may be written as

The boundary condition of the vanishing of the normal

component of the magnetic field gives &po/& = O at r= 1

in the x–y-plane, so that

A = –2 “au

–J

–2 ~av
n —cosnOdY3=—

rm o & J
—cosnOdt?.

7rn o ae

However, when 01 <@< – al, v= constant

A _ ‘$ “!!?cosed(j
l—y J o a8

– 8C e,
.

—J ( COS2e–COS201) 1’2COS0d6= –2CSin2 81.
T()

Then, if m is taken as the moment of the magnetic dipole

effect of the perturbing field, it is given by

m= –2wpo(2Csin281)C= –4mpoC2sin2@1

PO being the permeability of the medium external to the

cylinder. Putting in (4), we have

—7rsin261
——

%= [E(cos81)-K(cos 8,)sin281]2 = ‘;JIJ “

(7a)
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When the external magnetic field is parallel to the := Iy IV
narrow sides, we take

sin n9
rpO=-v+~A; ~

and then

–2 ./2 &sin nodo
A;=—

m J -=/2 ar

where

A__2 ~/2 –au
l— /

— sine de
G –m12 ad

– 8C m/2
.—

77 J( COS201–COS20)1’2sinOd0
8,

= –2CCOS2 O1.

The moment of the dipole term is

m ‘= –477poc2cos2 e~

and by means of (6)

m’ –P _ — COS2e,—. —_

1201
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Fig. 3. Transformed circular cylinder and origin equilatemf triangular

cyfinder.

Fig. 4. Transformed circular cyfinder and origin regular pentagon cyl-
(7b) inder.

If incoming is the E-wave directed along the u-axis, so

a2% [E(cos01)-K(cos81 )sin201]2”
that thp/& 1.-~ = O, we have as before -

poaz
A

90= –u-t~~cosn~

B. Scattering by Equilateral Conducting Triangular Cyl-

inder

‘r

Al =0.775a.

Let the equilateral triangle be shown in the u-o-plane of Therefore we find the equivalent magnetic dipole with

Fig. 3. From (1) we take moment

m 2rrAlC =3 58

J

z (Z3— 1)2/3
w= c dz+a 7=7 “ “

1 Z2

to transform the exterior of a unit circle into that of the
C. Scattering by Regular Conducting Pentagonal Cy!inders

triangle. From point B we have From (1) let us take

c=? ti B~e5 -’

()43~ 6’~
a = 0.735a. J

z (Z5 — 1)*/5

w= c dz+a
1 Z2

If incoming is the H-wave, then letting the external field to transform the exterior of the unit circle into that of the

be u-directed, we set regular pentagon (see Fig. 4)

c=2%”a(324’5”B(H)-’=
and qO=O at r= 1. We find When the external electric field is along the u-axis, then

B_q-&
1—7 — C~2’’’3(sin~O)3si nOd0d0

2~

.z~ V3~ Cffi 124(3t –4t3)2’3t dt
For 0< O<21r/5

‘R dW

9ti r(%i:)c 0735a

~=ReX
[

=Re Cei7w/,022/5(sin~8~}

2/5.—
2 r(3) = “

. – sin
()

~ .C.2215 sin~fl .

or But for 2T/5 <O<4m/5

(8a) du/dO= O
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so we have

B1=~
[J ()

. 5 Z?hgdo2“i5z215c sin ~ *

7ro

J

477/5
+ :;:i:w’stiodo]c22/5 Cos v

2v/5

=2”2:”c[;sin:J2”’5(sin:’Y5sin’~’

1

+~os2fi~2w/5(sin~0~5C0S0~0 .

If the external u-directed field is a magnetic field, we have

cos n8
To= –u+ ~A.~

au ncosne

% ,=1
-~A~ ~n+, ,=,=0

and hence

–2 “au

J

–2 “au
A~=— —cosn13d8=—

n~ o & I
—cosn(?dd.

nr o N?

For o<e<2~/5

au

()

215
_ =2V5.CcoS~ sin~@
de

and for 2T/5 <@<47r/5

au—.
ao -c22’5sinG(-sin?r’5

and finally, for 47r/5 <0< w

a~
5fj 215

—.
()

– C2215 sin~ .

So we have

A1=;;L’”’’.os:(sin?5cosod’d’

—
;;s%s%’rcosed’J

1_~~,~sin~~5cos#d@ 22/5C

1
9 -

7 /’

5
‘/ ,/

/i ,/ -.,.-
2 7 ,A ,,-, ~

— th,$ work, ?9(511>
/’

‘.J ,,/’a
- eg i9a)

a . “~,-”~~ @&/,

Fig. 5. Normalized linear dipole moment of a dielectric rectangular
cylinder, applied field paraflel to the long side.
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Fig. 6. Normalized linear dipole moment of a dielectric rectangular
cyfirrder, applied field parallel to the short side.

However

27r 5–0

(

55
sin — =

5 8 ; ‘Z–iu+m )

‘(5+fi-“)(5-~-u)
so

11= 4. 23/5
i5-5’8u’’5(5+~ -UT

“W -“Ydu

= Y(5 - w )(5 -m )3/5(5+ W )2/’

(3 2w2”’5(%r’5c0s6del”~+~cos~–sin

We have to evaluate two integrals:
and

l,=~z”’’(sin~~’sint?dll
~2=~2v15(sin~@~’5c0,@d@

=4~”’5( 5t–20t3+ 16t5)2’5tdt

( )

5 215
=~2’’J5(sin~~(l-2sin2~)dfl

~

Si@~i5uljs ~2_ ?U+ — du.=4. 2315
0 4 16 where the first term has been evaluated
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sin 7T/5 (
5t –20t3 +(6t5)2’5t2 dt

=2J
o m

J

,tiz ~/5 t7i10(t – 20t + 16t 2)2’5 dt
.

0 (~-t) ’/2

J=2.23/5 5-G /8t7/10

o (*-’T

“(5-Y-’)’’5@)-1’2dt
which, for 5 + fi /8= 0.905 m 1, goes nearly into

13= 2. 23/5J5-fi’st7’10(5-~-tr’(l-t)-’’’Od’
=2+23’5(5-Y)“’0+1+2’5J’~7’10(’-@2’5
“(1-5-Y)-’’’odu

=2.23,5(5-Y )’+’’lO&;;)

( ).Fl_.lJ.~ 5–* ~0123

10’lO’lO; 8 “

and so

12= 1 –2x0.123=0.754.

From this, we find Al and BI

Ill = ~23j5C(l .5sin36° xO.63 +COS2 18° xO.754) =0.92a.

Therefore

P 2rB1C—= —=5.15 (8b)
a2eo a2

pentagonal cylinders, for a field of arbitrary orientation

can be resolved into two components parallel; respec-

tively, to OA and OB. Owing to symmetry, the scattering

effect on the component parallel to OB is the same as that

on the component parallel to OA. Scattering by other

polygonal cylinders can be treated in the same waLy.

However, the evaluation of coefficients is much more

tedious.

III. THE SCATTERING OF RECTANGULAR

DIELXTRIC CYLINDERS

Now we take up the problem of the scattering at low

frequencies of the rectangular dielectric cylinder by taking

as the final answer to this problem the geometric mean (of

the effect of inscribed elliptic dielectric cylinder of a

dipole line of linear moment pi and the effect of the

circumscribed elliptic dielectric cylinder of mininnum

cross-sectional area of a dipole line of linear moment pc.

For a rectangular of sides 2a and 2b, it can easily be

proven that the circumscribed ellipse of minimum cross-

sectional area is the one with major and minor axes of

~ 2a and <f 2b, i.e.,

X2 J’2–1.—+—–

2a2 2b2

While the values of pi and pC (obviously pC = 2pi) can be

obtained from the existing literature [5]. Thus, an elliptic

dielectric cylinder in the w-plane of Fig. (2) in a uniform

field parallel to its major axis will produce a perturbing

potential of

:(k-1)

q= -Eo{w-JFqzFj- }

(W+k:)

+++:) ...
=- Eo~a2 a +

.

()
l+:k w

which is equivalent to the effect of a dipole moment of

:(k-1)

Pi= fi(U260)_
()

1+:

l+~k
a

and
E. being taken as unity. If the external uniform field is

_ 2.2V’C along the minor axis of the elliptic dielectric cylinder, the
Al=

T perturbing potential is given by

. [sin36° X0.63 +(1.5 cos360-sin2180) X0.754]
;(k-1)

= – 0.908a. *2= –@o{w- /w~ )

Hence
(l-:)(k+:)

m 27rAlC—. — =5.10.
~oa’ a’ ~ ,:(k-1)(1+:)

We treat only the case of the u-directed electric or
= –jEoT a

magnetic field for the cases of regular triangular and ()
k+: w
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which is equivalent to the effect of a dipole moment of

;(k-1)

()
1+: , EO=l.pj =7r(~2~o) k+ b/a

Since the dipole moment of the circumscribed elliptical

dielectric cylinder is twice that of the inscribed one, so the

final answer, being taken as their geometric mean is as

follows.

E. parallel to major axis

;(k-1)

~=tiw
()

1+: (9a)
ca2 1 + b/ak

E. parallel to minor axis

~(k-1)

~=tir ;+b,a (1+:). (9b)
ca2

The dielectric cylinder becomes the conducting cylinder

when k+ co so we plot (9a) and (9b), in Figs. 5 and 6

starting from k~ee down to k =2, shown are some results

from Eyges and Gianino [1] and from Mei and Van

Bladel [6]. In the cases of external field parallel to the

minor axis, our results agree very well with those previous

results, while in the other case, the agreement is only fair.

In fact, for b/a= 1, cos f31= l/fi, (5a) gives a result of

*= {2ii)2=8”7’4
while the result read from [6] is only about 8.4. Fork= co,

(9a) and (9b) both give a value of V (27r)= 8.8858, 1.33

percent higher than the exact value of 8.754, while that

from [6] is 5.555 percent lower so we might say the results

(9a) and (9b) are of practical value.

IV. SCATTERING OF OTHER EQUILATERAL

POLYGONAL CYLINDERS

The scattering problems of Figs. 3 and 4 and this kind

may be grouped together by finding the geometric mean

of the radii of the inscribed and the circumscribed circles

considering that the scattering effect of the equilateral

polygonal cylinder is identical to an equivalent cylinder of

radius equal to this mean value, so the final dipole’ mo-

ment is

P k–1—=
()

—27r Cos:
cOa2 k+l

(lo)

where n is the number of sides of the equilateral polygon,

a is the distance between its center and one of its vertics.

To see the validity of (10), take the case of Figs. 3 and 4,

first let k+ co thus, for the former, n= 3

P
— =7=3.14 (11)
coa2

while the exact value is 3.40, so (11) is 7.65 percent too

low, and for n= 5, (10) gives

~ = (2m)cos36° = 5.0832 (12)
coa

while the exact value is 5.15 of Fig. 4 so (12) is 1.29

percent lower than the exact value. For n= 4, (10) gives

P

(–)

2=+(2”)’
(13)

a

‘o VZ

Here a is the half-side, and (13) is 1.325 percent lower

than the exact value. It is seen that (10) is closer to the

exact value the higher is the number of sides n.

V. CONCLUSION

We have applied the method of taking the geometric

mean of the upper and lower bounds of dipole moment of

the dielectric cylinder as the final answer to the scattering

effect of this dielectric cylinder. This method has been

proved to be satisfactory in the calculation of the char-

acteristic impedances of transmission lines of special cross

sections. By the numerical checks we have done in this

paper, we believe that this method is equally useful in

problems of low frequency scattering.
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